Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Membrane filtration is an important industrial purification process used to access clean and potable water. The fabrication of the membranes used in these purification applications often involves expensive and energy-intensive processes that have a large negative impact on the environment. Sustainable alternatives with a high water flux and strong rejection performance are needed to purify water. The focus of this work is to investigate the use of polymer-grafted cellulose nanocrystals (CNCs) in membrane applications. The impact of the polymer grafting density and polymer conformation was investigated and it is shown that by increasing the grafting density of PEG such that it adopts a semidilute polymer brush conformation, the water flux through the membranes could be increased from 3.5 to 2900 L h–1 m–2 for CNC membranes without and with grafted PEG, respectively. These membranes also exhibited rejection performances with molecular weight cutoffs between 62 and 100 kDa for all polymer-grafted samples, consistent with the ultrafiltration regime. Thus, the design of these one-component composite materials can enhance the water permeability of ultrafiltration membranes while maintaining effective selectivity.more » « less
-
We present a look at Ookami, a project providing community access to a testbed supercomputer with the ARM-based A64FX processors developed by a collaboration between RIKEN and Fujitsu and deployed in the Japanese supercomputer Fugaku. We provide an overview of the project and details of the hardware, and describe the user base and education/training program. We present highlights from previous performance studies of two astrophysical simulation codes and present a strong scaling study of a full 3D supernova simulation as an example of the machine’s capability.more » « less
-
Abstract Particulate matter (PM) concentration levels in the London Underground (LU) are higher than London background levels and beyond World Health Organization (WHO) defined limits. Wheel, track, and brake abrasion are the primary sources of particulate matter, producing predominantly Fe-rich particles that make the LU microenvironment particularly well suited to study using environmental magnetism. Here we combine magnetic properties, high-resolution electron microscopy, and electron tomography to characterize the structure, chemistry, and morphometric properties of LU particles in three dimensions with nanoscale resolution. Our findings show that LU PM is dominated by 5–500 nm particles of maghemite, occurring as 0.1–2 μm aggregated clusters, skewing the size-fractioned concentration of PM artificially to larger sizes when measured with traditional monitors. Magnetic properties are largely independent of the PM filter size (PM 10 , PM 4 , and PM 2.5 ), and demonstrate the presence of superparamagnetic (< 30 nm), single-domain (30–70 nm), and vortex/pseudo-single domain (70–700 nm) signals only (i.e., no multi-domain particles > 1 µm). The oxidized nature of the particles suggests that PM exposure in the LU is dominated by resuspension of aged dust particles relative to freshly abraded, metallic particles from the wheel/track/brake system, suggesting that periodic removal of accumulated dust from underground tunnels might provide a cost-effective strategy for reducing exposure. The abundance of ultrafine particles identified here could have particularly adverse health impacts as their smaller size makes it possible to pass from lungs to the blood stream. Magnetic methods are shown to provide an accurate assessment of ultrafine PM characteristics, providing a robust route to monitoring, and potentially mitigating this hazard.more » « less
-
null (Ed.)Abstract We show that highly confined superfluid films are extremely nonlinear mechanical resonators, offering the prospect to realize a mechanical qubit. Specifically, we consider third-sound surface waves, with nonlinearities introduced by the van der Waals interaction with the substrate. Confining these waves to a disk, we derive analytic expressions for the cubic and quartic nonlinearities and determine the resonance frequency shifts they introduce. We predict single-phonon shifts that are three orders of magnitude larger than in current state-of-the-art nonlinear resonators. Combined with the exquisitely low intrinsic dissipation of superfluid helium and the strongly suppressed acoustic radiation loss in phononic crystal cavities, we predict that this could allow blockade interactions between phonons as well as two-level-system-like behavior. Our work provides a pathway towards extreme mechanical nonlinearities, and towards quantum devices that use mechanical resonators as qubits.more » « less
-
SUMMARY Lamellar magnetism is a source of remanent magnetization in natural rocks different from common bulk magnetic moments in ferrimagnetic minerals. It has been found to be a source for a wide class of magnetic anomalies with extremely high Koenigsberger ratio. Its physical origin are uncompensated interface moments in contact layers of nanoscale ilmenite lamellae inside an hematite host, which also generate unusual low-temperature (low-T) magnetic properties, such as shifted low-T hysteresis loops due to exchange bias. The atomic-magnetic basis for the exchange bias discovered in the hematite-ilmenite system is explored in a series of papers. In this third article of the series, simple models are developed for lamellae interactions of different structures when samples are either cooled in zero-field, or field-cooled in 5 T to temperatures below the ordering temperature of ilmenite. These models are built on the low-temperature measurements described earlier in Paper II. The important observations include: (i) the effects of lamellar shapes on magnetic coupling, (ii) the high-T acquisition of lamellar magnetism and low-T acquisition of magnetization of ilmenite lamellae, (iii) the intensity of lamellar magnetism and the consequent ilmenite magnetism in populations of randomly oriented crystals, (iv) lattice-preferred orientation of the titanohematite host crystal populations and (v) the effects of magnetic domain walls in the host on hysteresis properties. Based on exemplary growth models of lamellae with different geometries and surface couplings we here provide simple models to assess and explain the different observations listed above. Already the simplified models show that the shapes of the edges of ilmenite lamellae against their hematite hosts can control the degree of low-T coupling between ilmenite, and the lamellar magnetic moments. The models also explain certain features of the low-T exchange bias in the natural samples and emphasize the role of lattice-preferred orientation upon the intensity of remanent magnetization. The inverse link between ilmenite remanence and exchange-bias shift in bimodal low-T ilmenite lamellae is related to different densities of hematite domain walls induced by the clusters of ilmenite lamellae.more » « less
-
We describe TESSE, an emerging general-purpose, open-source software ecosystem that attacks the twin challenges of programmer productivity and portable performance for advanced scientific applications on modern high-performance computers. TESSE builds upon and extends the ParsecDAG/-dataflow runtime with a new Domain Specific Languages (DSL) and new integration capabilities. Motivating this work is our belief that such a dataflow model, perhaps with applications composed in domain specific languages, can overcome many of the challenges faced by a wide variety of irregular applications that are poorly served by current programming and execution models. Two such applications from many-body physics and applied mathematics are briefly explored. This paper focuses upon the Template Task Graph (TTG), which is TESSE's main C++ Api that provides a powerful work/data-flow programming model. Algorithms on spatial trees, block-sparse tensors, and wave fronts are used to illustrate the API and associated concepts, as well as to compare with related approaches.more » « less
An official website of the United States government
